830 research outputs found

    EA-CG: An Approximate Second-Order Method for Training Fully-Connected Neural Networks

    Full text link
    For training fully-connected neural networks (FCNNs), we propose a practical approximate second-order method including: 1) an approximation of the Hessian matrix and 2) a conjugate gradient (CG) based method. Our proposed approximate Hessian matrix is memory-efficient and can be applied to any FCNNs where the activation and criterion functions are twice differentiable. We devise a CG-based method incorporating one-rank approximation to derive Newton directions for training FCNNs, which significantly reduces both space and time complexity. This CG-based method can be employed to solve any linear equation where the coefficient matrix is Kronecker-factored, symmetric and positive definite. Empirical studies show the efficacy and efficiency of our proposed method.Comment: Change to AAAI-19 Versio

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    UMARS: Un-MAppable Reads Solution

    Get PDF
    [[abstract]]Background: Un-MAppable Reads Solution (UMARS) is a user-friendly web service focusing on retrieving valuable information from sequence reads that cannot be mapped back to reference genomes. Recently, next-generation sequencing (NGS) technology has emerged as a powerful tool for generating high-throughput sequencing data and has been applied to many kinds of biological research. In a typical analysis, adaptor-trimmed NGS reads were first mapped back to reference sequences, including genomes or transcripts. However, a fraction of NGS reads failed to be mapped back to the reference sequences. Such un-mappable reads are usually imputed to sequencing errors and discarded without further consideration.Methods: We are investigating possible biological relevance and possible sources of un-mappable reads. Therefore, we developed UMARS to scan for virus genomic fragments or exon-exon junctions of novel alternative splicing isoforms from un-mappable reads. For mapping un-mappable reads, we first collected viral genomes and sequences of exon-exon junctions. Then, we constructed UMARS pipeline as an automatic alignment interface.Results: By demonstrating the results of two UMARS alignment cases, we show the applicability of UMARS. We first showed that the expected EBV genomic fragments can be detected by UMARS. Second, we also detected exon-exon junctions from un-mappable reads. Further experimental validation also ensured the authenticity of the UMARS pipeline. The UMARS service is freely available to the academic community and can be accessed via http://musk.ibms.sinica.edu.tw/UMARS/.Conclusions: In this study, we have shown that some un-mappable reads are not caused by sequencing errors. They can originate from viral infection or transcript splicing. Our UMARS pipeline provides another way to examine and recycle the un-mappable reads that are commonly discarded as garbage

    Socioeconomic impacts of innovative dairy supply chain practices. The case of the Laiterie du Berger in the Senegalese Sahel

    Full text link
    This study analyzes the Laiterie Du Berger (LDB)'s milk supply chain and its contribution to strengthening the food security and socioeconomic resources of Senegalese Sahelian pastoral households. Porter's value chain model is used to characterize the innovations introduced by the LDB dairy in its milk inbound logistics and supplier relationships. A socioeconomic food security index and qualitative data are used to assess the dairy's supply chain's contribution to strengthen smallholder households' livelihoods. Data for this research were obtained through individual surveys, focus groups and in-depth interviews of LDB managers and milk suppliers. Results show that milk income contributes significantly to household food security. Suppliers who stabilize their dairy income between rainy and dry seasons, diversify income sources and have larger herds are more likely to remain food secure. The LDB innovations contribute by helping herders access biophysical and economic resources, leading to better livestock feed and household food security. (Résumé d'auteur
    corecore